99久久久国产精品免费无卡顿,亚洲S久久久久一区二区,欧美在线综合视频,野花国产精品入口,亚洲高清在线天堂精品,久久久久亚洲Av片无码观看,日韩免费毛片视频,又黄又爽又色的少妇毛片
Language |

solution

solution
    solution
    Your Position: Home > solution

    Roman Targosz and Jonathan Manson

    ??????2015/8/23??????view:
    PQ solution costs are to be evaluated case by case, but it is possible to provide some useful statistical data based on surveys carried out in a large number of cases.
        Figure 18.15 charts the proportion of load per sector covered by different types of redundant or mitigating solutions.
        The analysis of these solutions produced some interesting conclusions. Many of the correlations between solutions (both investment and load coverage) and PQ cost, frequency of events or sensitivity to PQ problems, which were thought to have been significant, have not been proven. Table 18.11 presents all significant relations, where 0.05 is used as reference threshold between PQ consequences and PQ solutions as confirmed by surveys.
        Figure 18.16 shows a certain relation (although not proven by the linear regression model; R2 linear = 0036) between PQ investment and experienced PQ cost.


     Figure 18.15 PQ solutions – installation coverage in % [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)
        Basically the slope angle suggests a positive relation between PQ investment and PQ unmitigated cost.



    Table 18.11 PQ consequence/PQ solution correlations [11]

     
            Figure 18.16 PQ cost/PQ solution investment relation [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)
    Figure 18.17 Mitigated and unmitigated PQ cost per unmitigated (real) PQ cost ratio as a function of PQ solution investment [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)
        Although there is no significant correlation between solutions and real cost, a strong correlation exists between investment in PQ solutions and the hypothetical to real cost ratio.
        This results in an indirect but clear link between solutions and (real) consequences. See Figure 18.17.
     Figure 18.18 Occurrence of equipment affected by PQ in annual % [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)
        The following broad conclusions can be drawn:
        ? The increase in the ratio between hypothetical and real (mitigated/unmitigated) is very visible in the case of UPS.
        ? One side effect of UPS use is the increased cost of harmonics. This can be explained by suboptimal use of UPS systems that are based on diffused small units without active power wave modulation, which in turn generates significant input current distortion.
        ? There is a small but significant (positive) correlation between number of power lines and costs of short interruptions, whilst such a correlation is insignificant in so far as dips are concerned.
        The study provided a number of additional conclusions regarding the occurrence of PQ problems, their sources and the equipment affected by them.
        The occurrence of different equipment being affected by PQ is presented in Figure 18.18:
        ? Electronic equipment is most affected in the industry and service categories.
        ? Static converters and electric motors are the next most affected.
        ? All other equipment types are more evenly affected in the services category.
        Below are some additional findings from the survey.
        ? The perceived level of presence of different PQ disturbances for all sectors is presented in Figure 18.19 and varies quite noticeably.
        ? The semiconductor respondents did not specify experiencing long interruptions, though they did record very intensive occurrence of voltage dips and short interruptions.
        ? For all sectors, on average, the presence of short interruptions is perceived as being the most intensive and disruptive.
        ? The same differences in perception between the industry and services categories also apply to the consequences of poor PQ (see Figure 18.20) and amount to:
        – Loss of synchronization of processing equipment, which is very common for continuous manufacturing and caused industry considerable problems for its activity.
        – Lock-ups of computers and switching equipment tripping were the second most problematic.
        – As far as services were concerned, circuit-breakers tripping and data loss cause the greatest problems.
        – According to survey [11], respondents affirmed that electric shocks are not relevant to the PQ issues investigated.
        ? The main sources or causes of PQ problems, see Figure 18.21, are defined as follows:
        – Motor-driven systems and, in general, static converters are the main sources of PQ problems for industry.
        – Electronic equipment and components are the equivalent main source for the services category.
        ? Regarding PQ solutions, Figure 18.22 presents the preferences of the two categories, industry and services.




    Figure 18.19 Presence (perceived) of PQ disturbances [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)
        – Both specify UPS most frequently.
        – Backup generators, which prove to be most effective in the case of long interruptions, are dominant in services.
        – Harmonic mitigation through harmonic filters is reported at 45% to 65% of the frequency.
        – For industry, passive filters are almost three times more popular than active filters.
        – For services, active filters are more popular but the difference is small.
        – In general, services apply a higher frequency of different PQ solutions than found in industry.
        – Industry tends to favor less costly, less universal solutions whenever possible.




    Figure 18.20 Frequency of PQ consequences as % of cases [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)Figure 18.20 Frequency of PQ consequences as % of cases [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)


        Figure 18.21 PQ problem source as % of cases [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)



    Figure 18.22 PQ solutions applied as % of cases [11] (Reproduced from the 2007 Leonardo Power Quality initiative Survey, R. Targosz)
        ? Looking at where the fault for poor PQ resides, in general the blame is usually placed at the foot of external causes. See Figure 18.23.
        ? Within that general statement, services more frequently admit that their installation could be the source.
        ? PQ measurement was of great concern because the survey [11] identified a different level of measurement of PQ parameters. Consequently the implication is that there exists an unequal level of understanding of and acceptance for the need for power-critical users to ensure consistently good PQ. Figure 18.24 presents the feedback to two questions – the ability to identify the sources of PQ events (the first four bars per category of the chart) and their frequency (the remaining eight bars per category) and the continuous monitoring of the key PQ parameters that further diagnose these issues:
         – For the identification data set, the average response across all information sources was 50% – a level which, to repeat, is significantly low for industrial sectors that depend on good PQ. Within that, rather surprisingly the services’ direct PQ measurement is much more frequent than that occurring in industry, where PQ data gathering is more reliant on the different PQ data acquisition components installed in its power systems.
     Figure 18.23 Poor PQ responsibility: 0, no; 4, high extreme [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)
        – Concerning continuous monitoring of key PQ parameters, this is more prevalent in industry than in services. Both reactive power and flicker are subject to continuous measurement several times more frequently by industry than by services. In 70% of the industry cases, reactive power is subject to continuous measurement and this could be for financial reasons when reactive power is likely to be subject to separate accounting procedures.
        ? For the case of flicker, a high proportion of the companies interviewed in the survey (46 out of 62) agreed that flicker generates PQ costs in terms of losses generated in employee efficiency, which can amount to 10% of annual employment cost.
        These costs are related to vision problems with symptoms like fatigue and increased error rate.
        These consequences relate to reduced productivity/inefficiency in work and in extreme cases to employee compensation. These costs amount to E167m, which is equivalent to approximately 1.5% of all hypothetical (mitigated) and real (unmitigated) costs. As thisis an area of current and as yet inconclusive debate, and although respondents affirmed that their employees’ efficiency was reduced by the levels of flicker experienced, the flicker cases at this stage have all been treated as hypothetical.
        Finally, and in addition to the summary of these technical findings, as was stated earlier but merits repeating, it is astounding that industrial sectors, for which electric power is critical, are not fully aware of these issues.


       Figure 18.24 PQ monitoring: four left bars, source of PQ event information; remaining bars, measured PQ parameter [11] (Reproduced from the 2007 Leonardo Power Quality Initiative Survey, R. Targosz)
        The main conclusion, however, remains that PQ costs in Europe are responsible for a serious reduction in industrial performance with an economic impact exceeding E150 bn.
    Novtium(Beijing) Electric Co.,LtdAll Rights Reserved Jing ICP 14036551
    主站蜘蛛池模板: 亚洲av无码成人专区| 国产亚洲高清在线精品99| 凹凸国产熟女精品视频| 亚洲香蕉伊综合在人在线| 久久不卡国产精品无码| 国产乱视频网站| 91精品综合| 91在线精品麻豆欧美在线| 大陆精大陆国产国语精品1024| 亚洲欧洲天堂色AV| 久久久波多野结衣av一区二区| 五月婷婷精品| 国产99免费视频| 激情综合五月网| 婷婷色狠狠干| 欧美第二区| 亚洲一级毛片在线观播放| 香蕉99国内自产自拍视频| 日韩毛片在线播放| 国产精品对白刺激| 福利视频一区| 亚洲成a人片7777| 免费看a级毛片| 亚洲男人天堂久久| 毛片免费高清免费| 亚洲欧洲日韩久久狠狠爱| 色综合手机在线| 国产精品久久自在自2021| 成人一级黄色毛片| 色婷婷视频在线| 亚洲无码高清一区| 国产永久免费视频m3u8| 国产中文一区a级毛片视频| 中文字幕乱码中文乱码51精品| 亚洲福利视频一区二区| 色婷婷在线播放| 九九这里只有精品视频| 亚洲黄色成人| 日韩a级毛片| 99re在线视频观看| 88av在线| 精品亚洲国产成人AV| 久久久久青草线综合超碰| 亚洲人成影院在线观看| 高潮毛片免费观看| 国产成人毛片| 欧美a级在线| 在线观看国产一区二区三区99| 国产网友愉拍精品视频| 亚洲 日韩 激情 无码 中出| 亚州AV秘 一区二区三区| www.99在线观看| 91国内视频在线观看| 欧美色99| 亚洲无码视频一区二区三区| 国产欧美日韩综合一区在线播放| 欧美精品综合视频一区二区| 亚洲码在线中文在线观看| 成年人免费国产视频| 成人欧美日韩| 久久国产精品77777| 亚洲精品爱草草视频在线| 三上悠亚精品二区在线观看| 国产美女一级毛片| 97视频在线观看免费视频| 亚洲第一视频网站| 免费三A级毛片视频| 天堂成人在线| 在线观看国产网址你懂的| 国产免费网址| 999精品在线视频| 国产精品网址你懂的| 国产成人调教在线视频| 日韩av在线直播| 蜜芽国产尤物av尤物在线看| 乱人伦视频中文字幕在线| 中文字幕在线不卡视频| 最新国产你懂的在线网址| 人妻精品久久久无码区色视| 亚洲天堂啪啪| 香蕉久人久人青草青草| 欧美精品三级在线|